
Algorithms- Spring 2025

Dynamic
Programming

Recap
+
- HW2-due Monday
· Readings posted through then

· For emails :
IfI don't reply

Win 24 hoursbe
a b

FibonacciComputationsmeomea
[S

calls
DY

n
Reset our victbecomes

a loop
cost: space O(n)
-

↳
o(r)
space

- S

[][9] = [I]·[]3.Dif[][2]
- ·

Proof: induction ~
Base case : ni1

It : Assume (oight] =[F
[01]·01 (

=>COFT]]

Runtime: time to compute [0]n
-

So-back to Chapter1

I

Ether way
:

or Ollogn) ??
&

But wait - Fr is exponential !
Specifically
,

Fr=- (g) "

④
4)=

So
...howmanyi

bits to write

-logotdown
-

why? K digit
number : -----
-O our 1
ineach

Clarification :
-

our earlier algorithms
Use O(n) additions or
subtractions

If a #164-bits-sure
!

But larger ?-
Let M(n) = time to[multiply 2 -digit

#S

Here: TIn)= TIE)+)~
- j

Best known : Nogn

Thn) = O(nlogn)

FibonacciRecapa
· "Simple" yet interesting example
· Illustrates how powerful this

concept can be.

Downside :
· Not always so obvious

hour

to convert the recursion↳ into an iterative structure!
I

ti
Key

: date structure

#due t with the recursion !
Use it to prove correctness.

Then
,
for code :

Start at base cases . 4

Save them !

Buildupnext"el,
base cases

.

Try to formalize this in-
a loop +data structure
format . -

Finally : analyze both&

a time
S

Rant aboutgreed :

-

When they
strategies ar

work,"greeda
effective !

But- often such intuitive

strategies fail.

*Dynamic programming
backtrackinga

ways
We'll study both , but better
to start here.

Tesegment on c
-

↳
T

↳
=
-

Can we try the same
trick ? yes ! I
text:

ng W

Memorization
Think about our

recursion :

calling splittable (i)
quite a bit.

After first time
it's

computed , store
the

answer.
-

Then
,

later calls just look
ot up

!

How many -
calls ?
-
↳oveNo -

How to store?
-array !

Splitteblei]
Text -
splittable

W im
for itn downi to i
Splittebe(i)-F for jai

Runcue/space : ton

Space : adding O(n)
for extra book array

- lowerch

S&(i) me

El -

=

O(n) space

sp
(n- 1) + (n

-z)+(n -3)+..
↑ 1

=O(n)
-

C compewith !
bodtracking

PestIncreasing Subsequence
↑

why "jump
to the middle" ?

Need a recursion !

Est : how many subsequences ?

AD.. In
1 z

↳ could use or skip each#
so 2" worst case

Beaktrackingapproach :

At index i :

&

Result:
-

Store last "taken" index
i

.

Consider including A[j] :

·

IfASAP !

· If Ati) is less
:

try both options
Recursion :

-

Code version : (helper function)

Problem-what did we want ??
LIS(A[1 .. n3) .

So : don't forget our
"main" :

&

Problem :

Next: memoze ?

What sort of calls are

we making often?

Can we save them ,
I

avoid recomputing over
and over?

Here:

This is a recursion ,
but

think for a moment
of it

as a function
--

After computing, stone
values !

values to store
?

How many

How long to compute
each ?

Now
,
can we do the same trick

as Fibonacci memorization,

a convert to something loop-based?

Rethink :

To fill in L[i][j],
what do I need?

-

-
&

&

So
, go

in that order !

E: A = [10 24161179]

scag

Result:

Picture :

